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Abstract: Asymmetric synthesis of (35,4S5)-3-phenylsulfonyl-4-phenylazetidin-2-ones
in up to 46% ee from achiral amines and 2-phenylsulfonyl-3-phenylpropenoyl chloride
was achieved with chiral Lewis-acid catalysis by salen-copper(II) complexes derived
from (1R,2R)-(-)-1,2-diaminocyclohexane. The absolute configuration was assigned by
single crystal, X-ray crystallographic analyis of enantiomerically pure (35,45)-(-)-3-
phenylsulfonyl-4-phenylazetidin-2-one (7). © 1999 Eisevier Science Ltd. All rights reserved.

We have recently described a new synthetic approach to frans-3-arylsulfonyl-4-phenyl-2-azetidinones 1 as
shown in Scheme 1. The 1,4-addition of amines to 2-arylsulfonyl-3-phenylpropenoy! chlorides 2 is much
faster than competing 1,2-addition to the acid chloride. From the kinetics of reaction, we invoke a ketene
intermediate formed by loss of HCI from the initial 1,4-addition of amine. Ring closure to give the trans-2-
azetidinone minimizes steric interactions in the transition state leading to the final product. In these systems, the
initial 1,4-addition sets the stereochemistry at both C3 and C4 of the azetidinone ring.
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Scheme 1. [3+1] Synthesis of trans-3-arylsulfonyl-4-phenyl-2-azetidinones.

The [3+1] route of Scheme 1 increases in practical value if chiral azetidinones 1 can be prepared. Of the
two major routes to chiral 2-azetidinones, one achieves enantioselectivity through the use of a chiral auxiliary in
the [2+2] cycloaddition of a ketene and an imine? and the other uses ring-closure of chiral g-amincacids.®> The
reaction of Scheme 1 constructs the ring from achiral components that do not readily accommodate a chiral
auxilliary. One possible enantioselective route is the addition of chiral amines to acid chlorides 2.
Diastereoselection would set chiral centers at C3 and C4. However, the addition of a-methylbenzylamine (o 2
(Ar = Ph) gives only a 68:32 mixture of diastereomers’ and the amine is consumed as a stoichiometric reagent.

Two approaches for catalytic,asymmetric 1,4-additions have been described that have application to our
[3+1] reaction. In one, chiral Lewis acids complex with the carbonyl prior to 1,4-addition to give facial
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selectivity during the approach of a non-chiral nucleophile.* Propenoyl chlorides 2 offer both sulfonyl and acid
chloride functionality as Lewis-acid binding sites. In the other, a chiral catalyst complexes with an achiral
nucleophile to give a chiral nucleophilic complex, which might give facial selectivity in the approach to 2.°
Copper-complexes of Jacobsen-type ligands were chosen as chiral Lewis acids in order to form tight complexes
with the 2-arylsulfonylpropenoyl chloride 2.° Amine complexes of these Lewis acids were also isolable as
potential chiral nucleophiles. Partial evaporation of a solution of p-methoxybenzylamine and (R, R)-3’
precipitated the chiral amine complex 4 as green crystals in > 95% yield.®
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Azetidinone 6' was isolated in 54% yield with a 46% ee” of the (-)-enantiomer following the addition of 1
equiv of p-methoxybenzylamine toa CH,Cl, solution of 1 equiv of 3 and 1 equiv of Z-3-phenyl-2-
(phenylsulfonyl)propenoyl chloride (5)' (each at 0.1 M, premixed for S min) at ambient temperature (Scheme 2).
The catalyst 3 was recovered in > 90% yield via trituration of the reaction mixture with hexanes. The Lewis acid
was reused in subsequent reactions without loss of enantioselectivity. Small amounts (< 5%) of amide 8' were
isolated from the reaction. A new product that was not observed in the uncatalyzed reaction' was also isolated in
low yield and was identified as coumarin 9.%'°
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Scheme 2. Enantioselective synthesis of azetidinone 6 via 1,4-additions.

A single recrystallization of the 46%-ee product from EtOAc-hexane gave enantiomerically pure (-)-6*
(22% overall yield from 5§) with [a], = -28.5° (¢ = 0.8, CH,Cl,). The N-p-methoxybenzyl substituent was
oxidatively removed with ceric ammonium nitrate in aqueous acetonitrile’ to give a 74% yield of enantiomerically
pure azetidinone 7 with [a], =-19.2° (¢ = 0.8, CH,Cl,)."" The absolute configuration of (-)-7 as (3§,45) was
established by single-crystal, X-ray crystallographic analysis (Figure 1).'?

The addition of ammonia to acid chloride § gives azetidinone 7 directly.! However, premixing 1 equiv
each of chiral Lewis acid 3 and acid chloride 5 prior to the addition of ammonia at 22 °C gave (-)-7 in 74%
isolated yield but in only 6% ee. In these reactions, less than 5% of amide 8 (R = H) was formed and none of
the coumarin 9 was detected.



Figure 1: An ORTEP plot of (35,4 S5)-3-phenylsulfonyl-4-phenylazetidin-2-one [(-)-7] as determined by
single crystal, X-ray crystallographic analysis. Thermal ellipsoids are shown at the 50% probability level.

Although the role of 3 in Scheme 2 was catalytic, the kinetics of the catalyzed and uncatalyzed processes
were such that optimal enantioselectivity was observed with stoichiometric 3, with ee’s decreasing to 19% with
0.5 equiv and to 1% with 0.1 equiv of 3. The use of 2.0 equiv of 3 actually gavé aslight decrease in the
observed ee (38% ee). The observed ee’s of the (-)-enantiomer also decreased as the temperature was lowered
giving only 10% ee at -78 °C using 1 equiv of amine, §, and 3.

The enantioselectivity of amine addition was quite sensitive to the structure of the salen ligand. Lewis acid
10" gave (-)-6 with 5% ee under conditions identical to those employed with 3 to give (-)-6 with 46% ee.
Imine complex 1 1° gave essentially racemic 6 (< 2% ee) under similar conditions. We surmise that the steric
bulk of the tert-butyl substituents of 10 hinder complexation of the Lewis acid and/or approach of the
nucleophileto the Lewis acid complex. Imine complex 11 lacks the chelating phenolic ligandsof 3 and 10
which may limit the rigidity of the Lewis acid complex with §.

We also examined the delivery of stoichiometric p-methoxybenzylamine and 3 to acid chloride § as the
complex 4. The addition of 1.0 equiv of 4 to a CH,Cl, solution of acid chloride 5" at 22 °C gave 2-azetidinone
6 in 54% isolated yield with a 12% ee of the (-)-enantiomer while addition of 4 at -78 °C gave only 7% ee. The
addition of ammonia complexes of 3 or 10 to acid chloride 5 gave only racemic 7. In the reactions of the amine
complex 4, either direct transfer of the amine to 2 or dissociation of amine and 3, followed by complexation of 3
with 2, and 1,4-addition of amine can contribute to the 12% ee observed.

Several competing reactions complicate the enantioselective synthesis of Scheme 2. As shown with
isolation of complex 4, the amine can compete with acid chloride 2 for the Lewis acid, which limits the effective
concentration of the Lewis acid-2 complex. Premixing stoichiometric 2 and 3 followed by addition of amine
gives azetidinone 6 in 46% ee while addition of amine complex 4 gives only 12% ee. This suggests either that
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1 4-addition of amine to the Lewis acid-2 complex is fast relative to dissociation of the Lewis acid and

formation of complex 4 or that the equilibria involved favor the Lewis-acid 2 complex relative to complex 4.

In summary, chiral Jacobsen-type Lewis acids can be used to catalyze enantioselective 1,4-additions of

amines to propenoyl chloride derivatives to give azetidinone products. Little of the competing 1,2-addition of
amine to the acid chloride functionality is observed. Although 46% ee was the maximum observed in this study,
the use of acid chlorides as carbonyl partners for 1,4-additions of amines and the construction of chiral

azetidinones from achiral precursors represent novel observations for further study. We are currently examining

other propenoyl chloride derivatives with electron-withdrawing groups at the 2-position as well as other metals
with Jacobsen-type ligands and other ligands such as chelating chiral oxazolines. "
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For 4: mp 320 °C (dec), Anal. Calcd for C,gH,,CuN,O;: C, 64.54; H, 6.00; N, 8.06. Found: C, 64.67,
H, 6.05; N, 8.00. For (-)-6: mp 141-143 °C. For 9: mp 208-210°C, 'H NMR (CDCl,)  8.81 (s, 1 H),
8.15(AA'BB’, 2 H, J (‘doublet’) = 8 Hz), 7.27-7.73 (m, 7 H); *C NMR (CDCl,) § 156.2, 155.6,
148.3, 139.1, 136.0, 134.9, 131.1, 130.3, 130.1, 129.8, 129.1, 126.2, 118.0, 117.8, 115.0; IR (KBr)
1742 cm'; EI MS, m/z 286.0283 (Calcd for C, H, ,O,S: 286.0300).

The ee’s of 6 were determinedfrom the 'H NMR integrals of the methoxy singlets following the addition of
chiral shift reagent {europium tris[3-(heptafluoropropylhydroxymethlene)-(+)-camphorate]}.

Compound 9 was not formed from either a mixture of 5 and 3 in the absence of p-methoxybenzylamine or
from the carboxylic acid of 5 in the presence or absence of p-methoxybenzylamine. A plausible source of
9 is exchange of a salicylaldehyde equivalent from 3 with a benzaldehyde equivalent from acid chloride 5
(perhaps involving imine derivatives of p-methoxybenzylamine) and cylization to the coumarin.

The ee’s of 7 were determined by chiral HPLC.

Single crystals of (35,48)~(-)-7 (mp 184-185 °C, C,(H,;NO,S, M =391.47) crystallized from EtOAc as
colorless needles in the monoclinic space group C2/c, a = 12.0460(2) A b= 15.6871(3) A, ¢ =
15.1252(3) A, @ = 90, g= 111.6410(10)°, y = 90°, V = 2656.70(9) A*, Z=8,D, = 1.437 gem®, u =
250 cm™, T =193 K. Data were collected on a Siemens SMART CCD Area Detector System using Mo
Ka (x = 0.71073) radiation, 6-range 2.23 to 28.24°. Of 8042 reflections measures (+h, +k, +1), 3102
were unique and 2873 had / > 20. The structure was solved by direct methods and refined (based on F°
using all data) by full matrix least-squares methods. Final discrepancy factors: R, =3.41% and wR2 =
8.41%. The authors have deposited the atomic coordinates for the crystal structure of (35,4S5)-7 with the
Cambridge Crystallographic Data Center, 12 Union Road, Cambndge, CB2 1EZ, U. K.
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